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Chapter 5

The Discontinuous Conduction Mode

When the ideal switches of a dc-dc converter are implemented using current-

unidirectional and/or voltage-unidirectional semiconductor switches, one or more new

modes of operation known as discontinuous conduction modes (DCM) can occur. The

discontinuous conduction mode arises when the switching ripple in an inductor current or

capacitor voltage is large enough to cause the polarity of the applied switch current or

voltage to reverse, such that the current- or voltage-unidirectional assumptions made in

realizing the switch with semiconductor devices are violated. The DCM is commonly

observed in dc-dc converters and rectifiers, and can also sometimes occur in inverters or in

other converters containing two-quadrant switches.

The discontinuous conduction mode typically occurs with large inductor current

ripple in a converter operating at light load and containing current-unidirectional switches.

Since it is usually required that converters operate with their loads removed, DCM is

frequently encountered. Indeed, some converters are purposely designed to operate in

DCM for all loads.

The properties of converters change radically in the discontinuous conduction

mode. The conversion ratio M becomes load-dependent, and the output impedance is

increased. Control of the output may be lost when the load is removed. We will see in a

later chapter that the converter dynamics are also significantly altered.

In this chapter, the origins of the discontinuous conduction mode are explained, and

the mode boundary is derived. Techniques for solution of the converter waveforms and

output voltage are also described. The principles of inductor volt-second balance and

capacitor charge balance must always be true in steady-state, regardless of the operating

mode. However, application of the small ripple approximation requires some care, since

the inductor current ripple (or one of the inductor current or capacitor voltage ripples) is not

small.

Buck and boost converters are solved as examples. Characteristics of the basic

buck, boost, and buck-boost converters are summarized in tabular form.
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5 . 1 . Origin of the discontinuous conduction mode, and mode boundary

Let us consider how the inductor

and switch current waveforms change as

the load power is reduced. Let’s use the

buck converter, Fig. 5.1, as a simple

example. The inductor current iL(t)  and

diode current iD(t) waveforms are

sketched in Fig. 5.2 for the continuous

conduction mode. As described in

chapter 2, the inductor current waveform

contains a dc component I, plus

switching ripple of peak amplitude ∆iL.

During the second subinterval, the diode

current is identical to the inductor

current. The minimum diode current

during the second subinterval is equal to

(I – ∆iL); since the diode is a single-

quadrant switch, operation in the

continuous conduction mode requires

that this current remain positive. As

shown in chapter 2, the inductor current

dc component I is equal to the load

current:

I = V / R (5-1)

since no dc current flows through capacitor C. It can be seen that I depends on the load

resistance R. The switching ripple peak amplitude is:

   
∆iL =

(Vg – V)
2L

DTs =
Vg DD'Ts

2L (5-2)

The ripple magnitude depends on the applied voltage (Vg – V), on the inductance L, and on

the transistor conduction time DTs. But it does not depend on the load resistance R . The

inductor current ripple magnitude varies with the applied voltages rather than the applied

currents.

Suppose now that the load resistance R is increased, so that the dc load current is

decreased. The dc component of inductor current I will then decrease, but the ripple

magnitude ∆iL will remain unchanged. If we continue to increase R , eventually the point is

+
–
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+

V

–

D1Vg

iL(t)

iD(t)

Fig. 5.1. Buck converter example.
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Fig. 5.2. Buck converter waveforms in the
continuous conduction mode: (a) inductor

current iL(t), (b) diode current iD(t).
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reached where I = ∆iL, illustrated in Fig.

5.3. It can be seen that the inductor current

iL(t) and the diode current iD(t) are both zero

at the end of the switching period. Yet the

load current is positive and non-zero.

What happens if we continue to

increase the load resistance R? The diode

current cannot be negative; therefore, the

diode must become reverse-biased before

the end of the switching period. As

illustrated in Fig. 5.4, there are now three

subintervals during each switching period

Ts. During the first subinterval of length

D1Ts the transistor conducts, and the diode

conducts during the second subinterval of

length D2Ts. At the end of the second

subinterval the diode current reaches zero,

and for the remainder of the switching

period neither the transistor nor the diode

conduct. The converter operates in the

discontinuous conduction mode.

Figure 5.3 suggests a way to find

the boundary between the continuous and

discontinuous conduction modes. It can be

seen that, for this buck converter example,

the diode current is positive over the entire

interval DTs < t < Ts provided that I > ∆iL.

Hence, the conditions for operation in the

continuous and discontinuous conduction

modes are:

   I > ∆iL for CCM

I < ∆iL for DCM (5-3)

where I and ∆iL are found assuming that the

converter operates in the continuous

conduction mode. Insertion of Eqs. (5-1)

a)
iL(t)

t0 DTs Ts

conducting
devices: Q1 D1 Q1

∆iL
I

b)
iD(t)

t0 DTs Ts

I ∆iL

Fig. 5.3. Buck converter waveforms at the boundary
between the continuous and discontinuous

conduction modes: (a) inductor current iL(t),

(b) diode current iD(t).
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conducting
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X
D1Ts D2Ts D3Ts

b)
iD(t)

t0 DTs Ts
D2Ts

Fig. 5.4. Buck converter waveforms in the
discontinuous conduction mode: (a) inductor

current iL(t), (b) diode current iD(t).
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and (5-2) into Eq. (5-3) yields the following

condition for operation in the discontinuous

conduction mode:

  DVg

R <
DD'TsVg

2L (5-4)

Simplification leads to

  2L
RTs

< D'
(5-5)

This can also be expressed
  K < Kcrit(D) for DCM

where K = 2L
RTs

and Kcrit(D) = D'
(5-6)

The dimensionless parameter K is a measure of

the tendency of a converter to operate in the

discontinuous conduction mode. Large values of

K lead to continuous mode operation, while

small values lead to the discontinuous mode for

some values of duty cycle. The critical value of K

at the boundary between modes, Kcrit(D), is a

function of duty cycle, and is equal to D’ for the

buck converter.

The critical value Kcrit(D) is plotted vs. duty cycle D in Fig. 5.5. An arbitrary choice

of K is also illustrated. For the values shown, it can be seen that the converter operates in

DCM at low duty cycle, and in CCM at high duty cycle. Figure 5.6 illustrates what

happens with heavier loading. The load resistance R is reduced in value, such that K is

larger. If K is greater than 1, then the converter operates in the continuous conduction

mode for all duty cycles.

It is natural to express the mode boundary in terms of the load resistance R , rather

than the dimensionless parameter K . Equation (5-6) can be rearranged to directly expose

the dependence of the mode boundary on the load resistance:

  R < Rcrit(D) for CCM

R > Rcrit(D) for DCM

where Rcrit(D) = 2L
D'Ts (5-7)

So the converter enters the discontinuous conduction mode when the load resistance R

exceeds the critical value Rcrit. This critical value depends on the inductance, the switching

K
crit (D) = 1 – D

0 D1
0

1

2

K = 2L/RTs

K < Kcrit:
DCM

K > Kcrit:
CCM

Fig. 5.5. Buck converter Kcrit(D) vs. D. The
converter operates in CCM when K >

Kcrit, and in DCM when K < Kcrit.

K
crit (D) = 1 – D

0 D1
0

1

2
K = 2L/RTs

K > Kcrit:
CCM

Fig. 5.6. Comparison of K with Kcrit(D), for
a larger value of K. Since K > 1, the
converter operates in CCM for all D.
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period, and the duty cycle. Note that, since D’ ≤ 1, the minimum value of Rcrit is 2L / Ts.

Therefore, if R < 2L / Ts, then the converter will operate in the continuous conduction

mode for all duty cycles.

These results can be applied to loads which are not pure linear resistors. An

effective load resistance R is defined as the ratio of the dc output voltage to the dc load

current: R = V / I. This effective load resistance is then used in the above equations.

A similar mode boundary analysis can be performed for other converters. The boost

converter is analyzed in section 5.3, while analysis of the buck-boost converter is left as a

homework problem. The results are listed in Table 5.1, for the three basic dc-dc

converters. In each case, the dimensionless parameter K is defined as K = 2L / RTs, and

the mode boundary is given by

  K > Kcrit(D) or R < Rcrit(D) for CCM

K < Kcrit(D) or R > Rcrit(D) for DCM (5-8)

Table 5.1.  CCM-DCM mode boundaries for the buck, boost, and buck-boost converters

Converter Kcrit(D)    max
0 ≤ D ≤ 1

( Kcrit ) Rcrit(D)    min
0 ≤ D ≤ 1

( Rcrit )

Buck (1 – D) 1   2L
(1 – D)T s

  2 L
Ts

Boost D (1 – D)2  4
27

  2L
D (1 – D)2 T s

  27
2

L
Ts

Buck-boost (1 – D)2 1   2L
(1 – D)2 T s

  2 L
Ts

5 . 2 . Analysis of the conversion ratio M(D,K)

With a few modifications, the same techniques and approximations developed in

chapter 2 for the steady-state analysis of the continuous conduction mode may be applied to

the discontinuous conduction mode.

(a) Inductor volt-second balance. The dc component of the voltage applied to

an inductor must be zero:

  
vL = 1

Ts
vL(t) dt

0

Ts

= 0
(5-9)

(b) Capacitor charge balance. The dc component of current applied to a

capacitor must be zero:

  
iC = 1

Ts
iC(t) dt

0

Ts

= 0
(5-10)
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These principles must be true for any circuit which operates in steady state,

regardless of the operating mode.

(c) The linear ripple approximation. Care must be used when employing the

linear ripple approximation in the discontinuous conduction mode.

(i) Output capacitor voltage ripple. Regardless of the operating

mode, it is required that the output voltage ripple be small. Hence,

for a well-designed converter operating in the discontinuous

conduction mode, the peak output voltage ripple ∆v should be much

smaller in magnitude than the output voltage dc component V . So

the linear ripple approximation applies to the output voltage

waveform:

   v(t) ≈ V (5-11)

(ii) Inductor current ripple. By definition, the inductor current ripple

is not small in the discontinuous conduction mode. Indeed, Eq. (5-

3) states that the inductor current ripple ∆iL is greater in magnitude

than the dc component I. So neglecting the inductor current ripple

leads to inaccurate results. In other converters, several inductor

currents, or a capacitor voltage, may contain large switching ripple

which should not be neglected.

The equations necessary for solution of the voltage conversion ratio can be obtained by

invoking volt-second balance for each inductor voltage, and charge balance for each

capacitor current, in the network. The switching ripple is ignored in the output capacitor

voltage, but the inductor current switching ripple must be accounted for in this buck

converter example.

Let us analyze the conversion ratio M = V / Vg of the buck converter of Fig. 5.1.

When the transistor conducts, for 0 < t < D1Ts, the converter circuit reduces to the network

of Fig. 5.7(a). The inductor voltage and capacitor current are given by

   vL(t) = Vg – v(t)

iC(t) = iL(t) – v(t) / R (5-12)

By making the linear ripple approximation, to ignore the output capacitor voltage ripple,

one obtains

   vL(t) ≈ Vg – V

iC(t) ≈ iL(t) – V / R (5-13)

Note that the inductor current ripple has not been ignored.
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The diode conducts during subinterval 2,

D1Ts < t < (D1 + D2)Ts. The circuit then reduces to

Fig. 5.7(b). The inductor voltage and capacitor

current are given by

   vL(t) = – v(t)
iC(t) = iL(t) – v(t) / R (5-14)

By neglecting the ripple in the output capacitor

voltage, one obtains

   vL(t) ≈ – V

iC(t) ≈ iL(t) – V / R (5-15)

The diode becomes reverse-biased at time t =

(D1 + D2)Ts. The circuit is then as shown in Fig.

5.7(c), with both transistor and diode in the off-state.

The inductor voltage and inductor current are both

zero for the remainder of the switching period (D1 +

D2)Ts < t < Ts. The network equations for the third

subinterval are given by

  vL = 0, iL = 0
iC(t) = iL(t) – v(t) / R (5-16)

Note that the inductor current is constant and

equal to zero during the third subinterval, and

therefore the inductor voltage must also be zero in

accordance with the relation vL(t) = L diL(t)/dt. In

practice, parasitic ringing is observed during this

subinterval. This ringing occurs owing to the

resonant circuit formed by the inductor and the

semiconductor device capacitances, and typically has little influence on the converter

steady-state properties. Again ignoring the output capacitor voltage ripple, one obtains

  vL(t) = 0
iC(t) = – V / R (5-17)

Equations (5-13), (5-15), and (5-17) can now be used to plot the inductor voltage

waveform as in Fig. 5.8. According to the principle of inductor volt-second balance, the dc

component of this waveform must be zero. Since the waveform is rectangular, its dc

component (or average value) is easily evaluated:

a)

+
–Vg

L

C R

+

v(t)

–

iC(t)+  vL(t)  –

iL(t)

b)

+
–Vg

L

C R

+

v(t)

–

iC(t)+  vL(t)  –

iL(t)

c)

+
–Vg

L

C R

+

v(t)

–

iC(t)+  vL(t)  –

iL(t)

Fig. 5.7. Buck converter circuits,
(a) during subinterval 1, (b) during
subinterval 2, (c) during subinterval
3.

vL(t)

0
Ts t

D1Ts D2Ts D3Ts

Vg – V

– V

Fig. 5.8. Inductor voltage waveform vL(t),
buck converter operating in
discontinuous conduction mode.
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  vL(t) = D1(Vg – V) + D2( – V) + D3(0) = 0
(5-18)

Solution for the output voltage yields

  V = Vg

D1

D1 + D2 (5-19)

The transistor duty cycle D (which coincides with the subinterval 1 duty cycle D1) is the

control input to the converter, and can be considered known. But the subinterval 2 duty

cycle D2 is unknown, and hence another equation is needed to eliminate D2 and solve for

the output voltage V.

The second equation is obtained by use of capacitor

charge balance. The connection of the capacitor to its

adjacent components is detailed in Fig. 5.9. The node

equation of this network is

  iL(t) = iC(t) + V / R (5-20)

By capacitor charge balance, the dc component of capacitor

current must be zero:

  iC = 0 (5-21)

Therefore, the dc load current must be supplied entirely by the other elements connected to

the node. In particular, for the case of the buck converter, the dc component of inductor

current must be equal to the dc load current:

  iL = V / R (5-22)

So we need to compute the dc component of the inductor current.

Since the inductor current ripple is

not small, determination of the inductor

current dc component requires that we

examine the current waveform in detail.

The inductor current waveform is sketched

in Fig. 5.10. The current begins the

switching period at zero, and increases

during the first subinterval with a constant

slope, given by the applied voltage divided

by the inductance. The peak inductor

current ipk is equal to the constant slope, multiplied by the length of the first subinterval:

  
iL(D1Ts) = ipk =

Vg – V
L D1Ts (5-23)

L

C R

+

v(t)

–

iC(t)

iL(t) v(t)/R

Fig. 5.9. Connection of the
output capacitor to
adjacent components.

iL(t)

t0 DTs Ts
D1Ts D2Ts D3Ts

<i L> = I

ipk
Vg –V

L –V
L

Fig. 5.10. Inductor current waveform iL(t), buck
converter operating in discontinuous conduction
mode.
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The dc component of the inductor current is again the average value:

  
iL = 1

Ts
iL(t) dt

0

Ts

(5-24)

The integral, or area under the iL(t) curve, is the area of the triangle having height ipk and

base dimension (D1 + D2)Ts. Use of the triangle area formula yields

  
iL(t) dt

0

Ts

= 1
2

ipk (D1 + D2)Ts
(5-25)

Substitution of Eqs. (5-23) and (5-25) into Eq. (5-24) leads to

  
iL = (Vg – V)

D1Ts

2L
(D1 + D2) (5-26)

Finally, by equating this result to the dc load current, according to Eq. (5-22), we obtain

  V
R =

D1Ts

2L
(D1 + D2) (Vg – V)

(5-27)

Thus, we have two unknowns, V and D2, and we have two equations. The first equation,

Eq. (5-19), was obtained by inductor volt-second balance, while the second equation, Eq.

(5-27), was obtained using capacitor charge balance. Elimination of D2 from the two

equations, and solution for the voltage conversion ratio M(D1, K) = V / Vg, yields

  V
Vg

= 2
1 + 1 + 4K / D1

2

where K = 2L / RTs

valid for K < Kcrit (5-28)

This is the solution of the buck converter operating in discontinuous conduction mode.

The complete buck converter characteristics, including both continuous and

discontinuous conduction modes, are therefore

  

M =

D for K > Kcrit

2
1 + 1 + 4K / D2

for K < Kcrit

(5-29)

where the transistor duty cycle D is identical to the subinterval 1 duty cycle D1 of the above

derivation. These characteristics are plotted in Fig. 5.11, for several values of K . It can be

seen that the effect of the discontinuous conduction mode is to cause the output voltage to

increase. As K tends to zero (the unloaded case), M tends to unity for all nonzero D. The

characteristics are continuous, and Eq. (5-28) intersects the CCM characteristic M = D at

the mode boundary.
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0.0
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1.0

M(D,K)

0.0 0.2 0.4 0.6 0.8 1.0
D

K = 0.01

K = 0.1

K = 0.5

K ≥ 1

Fig. 5.11. Voltage conversion ratio M(D, K), buck converter.

5 . 3 . Boost converter example

As a second example, consider the

boost converter of Fig. 5.12. Let’s

determine the boundary between modes,

and solve for the conversion ratio in the

discontinuous conduction mode. Behavior

of the boost converter operating in the

continuous conduction mode was analyzed previously, in section 2.3, and expressions for

the inductor current dc component I and ripple peak magnitude ∆iL were found.

When the diode conducts, its current is identical to the inductor current iL(t). As can

be seen from Fig. 2.18, the minimum value of the inductor current during the diode

conduction subinterval DTs < t < Ts is (I – ∆iL). If this minimum current is positive, then

the diode is forward-biased for the entire subinterval DTs < t < Ts, and the converter

operates in the continuous conduction mode. So the conditions for operation of the boost

converter in the continuous and discontinuous conduction modes are:

   I > ∆iL for CCM

I < ∆iL for DCM (5-30)

which is identical to the results for the buck converter. Substitution of the CCM solutions

for I and ∆iL, Eqs. (2-39) and (2-43), yields

+
– Q1

L

C R

+

v(t)

–

D1

Vg

i(t)

+   vL(t)   –

iD(t)

iC(t)

Fig. 5.12. Boost converter example.
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  Vg

D'2R
>

DTsVg

2L
for CCM

(5-31)

This equation can be rearranged to obtain

  2L
RTs

> DD'2 for CCM
(5-32)

which is in the standard form

  K > Kcrit(D) for CCM

K < Kcrit(D) for DCM

where K = 2L
RTs

and Kcrit(D) = DD'2
(5-33)

The conditions for operation in the

continuous or discontinuous conduction

modes are of similar form to those for the

buck converter; however, the critical value

Kcrit(D) is a different function of the duty

cycle D. The dependence of Kcrit(D) on the

duty cycle D is plotted in Fig. 5.13. Kcrit(D)

is zero at D = 0 and at D = 1, and has a

maximum value of 4/27 at D = 1/3. Hence,

if K is greater than 4/27, then the converter

operates in the continuous conduction mode

for all D. Figure 5.14 illustrates what

happens when K is less than 4/27. The

converter then operates in the discontinuous

conduction mode for some intermediate

range of values of D near D = 1/3. But the

converter operates in the continuous

conduction mode near D = 0 and D = 1.

Unlike the buck converter, the boost

converter must operate in the continuous

conduction mode near D = 0 because the

ripple magnitude approaches zero while the

dc component I does not.

Next, let us analyze the conversion

ratio M = V/Vg of the boost converter. When

the transistor conducts, for subinterval 1,

0

0.05

0.1

0.15

Kcrit(D)

0 0.2 0.4 0.6 0.8 1

D

Kcrit(1
3) = 4

27

Fig. 5.13. Boost converter Kcrit(D) vs. D.

0

0.05

0.1

0.15

K
crit (D

)

0 0.2 0.4 0.6 0.8 1

D

K

K < Kcrit

DCM CCM
K > KcritC

C
M

Fig. 5.14. Comparison of K with Kcrit(D).
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0 < t < D1Ts, the converter circuit reduces to

the circuit of Fig. 5.15(a). The inductor voltage

and capacitor current are given by

  vL(t) = Vg

iC(t) = – v(t) / R (5-34)

Use of the linear ripple approximation, to

ignore the output capacitor voltage ripple, leads

to

   vL(t) ≈ Vg

iC(t) ≈ – V / R (5-35)

During the second subinterval D1Ts < t < (D1 +

D2)Ts, the diode conducts. The circuit then

reduces to Fig. 5.15(b). The inductor voltage

and capacitor current are given by

   vL(t) = Vg – v(t)

iC(t) = i(t) – v(t) / R (5-36)

Neglect of the output capacitor voltage ripple

yields

   vL(t) ≈ Vg – V

iC(t) ≈ i(t) – V / R (5-37)

The inductor current ripple has not been neglected.

During the third subinterval, (D1 + D2)Ts < t < Ts, both transistor and diode are in

the off-state, and Fig. 5.15(c) is obtained. The network equations are:

  vL = 0, i = 0
iC(t) = – v(t) / R (5-38)

Use of the small-ripple approximation yields

  vL(t) = 0
iC(t) = – V / R (5-39)

Equations (5-35), (5-37), and (5-39) are

now used to sketch the inductor voltage

waveform as in Fig. 5.16. By volt-second

balance, this waveform must have zero dc

component when the converter operates in

a)

C R

+

v(t)

–

iC(t)

+
–

L

Vg

i(t)

+   vL(t)   –

b)

C R

+

v(t)

–

iC(t)

+
–

L

Vg

i(t)

+   vL(t)   –

c)

C R

+

v(t)

–

iC(t)

+
–

L

Vg

i(t)

+   vL(t)   –

Fig. 5.15. Boost converter circuits, (a) during

subinterval 1, 0 < t < D1Ts, (b) during

subinterval 2, D1Ts < t < (D1 + D2)Ts,

(c) during subinterval 3, (D1 + D2)Ts < t < Ts.

vL(t)

0
Ts t

D1Ts D2Ts D3Ts

Vg

Vg – V

Fig. 5.16. Inductor voltage waveform

vL(t), boost converter operating in
discontinuous conduction mode.
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steady-state. By equating the average value of this vL(t) waveform to zero, one obtains

  D1Vg + D2(Vg – V) + D3(0) = 0 (5-40)

Solution for the output voltage V yields

  V =
D1 + D2

D2
Vg

(5-41)

The diode duty cycle D2 is again an unknown, and so a second equation is needed for

elimination of D2 before the output voltage V can be found.

We can again use capacitor charge balance to obtain the

second equation. The connection of the output capacitor to its

adjacent components is detailed in Fig. 5.17. Unlike the buck

converter, the diode in the boost converter is connected to the

output node. The node equation of Fig. 5.17 is

  iD(t) = iC(t) + v(t) / R (5-42)

where iD(t) is the diode current. By capacitor charge balance,

the capacitor current iC(t) must have zero dc component in steady-state. Therefore, the

diode current dc component <iD> must be equal to the dc component of the load current:

  iD = V / R (5-43)

So we need to sketch the diode current waveform, and find its dc component.

The waveforms of the inductor

current i(t) and diode current iD(t) are

illustrated in Fig. 5.18. The inductor current

begins at zero, and rises to a peak value ipk

during the first subinterval. This peak value

ipk is equal to the slope Vg / L, multiplied by

the length of the first subinterval, D1Ts:

  
ipk =

Vg

L
D1Ts (5-44)

The diode conducts during the second

subinterval, and the inductor current then

decreases to zero, where it remains during the

third subinterval. The diode current iD(t) is

identical to the inductor current i(t) during the

second subinterval. During the first and third

subintervals, the diode is reverse-biased and

C R

+

v(t)

–

D1 iD(t)

iC(t)

Fig. 5.17. Connection of
the output capacitor to
adjacent components.

a)
i(t)

t0 DTs Ts
D1Ts D2Ts D3Ts

ipk

Vg –V

L

Vg

L

b)
iD(t)

t0 DTs Ts
D1Ts D2Ts D3Ts

ipk

Vg –V

L

<i D>

Fig. 5.18. Boost converter waveforms in the
discontinuous conduction mode: (a) inductor

current i(t), (b) diode current iD(t).
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hence iD(t) is zero.

The dc component of the diode current, <iD>, is:

  
iD = 1

Ts

iD(t) dt
0

Ts

(5-45)

The integral is the area under the iD(t) waveform. As illustrated in Fig. 5.18(b), this area is

the area of the triangle having peak value ipk and base dimension D2Ts:

  
iD(t) dt

0

Ts

= 1
2

ipk D2Ts
(5-46)

Substitution of Eqs. (5-44) and (5-46) into Eq. (5-45) leads to the following expression for

the dc component of the diode current:

  
iD = 1

Ts

1
2

ipk D2Ts =
VgD1D2Ts

2L (5-47)

By equating this expression to the dc load current as in Eq. (5-43), one obtains the final

result

  VgD1D2Ts

2L
= V

R (5-48)

So now we have two unknowns, V and D2. We have two equations: Eq. (5-41)

obtained via inductor volt-second balance, and Eq. (5-48) obtained using capacitor charge

balance. Let us now eliminate D2 from this system of equations, and solve for the output

voltage V. Solution of Eq. (5-41) for D2 yields

  
D2 = D1

Vg

V – Vg (5-49)

By inserting this result into Eq. (5-48), and rearranging terms, one obtains the following

quadratic equation:

  
V 2 – VVg –

V g
2D1

2

K = 0
(5-50)

Use of the quadratic formula yields

   V
Vg

=
1 ± 1 + 4D1

2 / K
2 (5-51)

The quadratic equation has two roots: one of the roots of Eq. (5-51) is positive, while the

other is negative. We already know that the output voltage of the boost converter should be

positive, and indeed, from Eq. (5-41), it can be seen that V/Vg must be positive since the

duty cycles D1 and D2 are positive. So we should select the positive root:
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   V
Vg

= M(D1,K) =
1 + 1 + 4D1

2 / K
2 (5-52)

where K = 2L / RTs

valid for K < Kcrit(D)

This is the solution of the boost converter operating in the discontinuous conduction mode.

The complete boost converter characteristics, including both continuous and

discontinuous conduction modes, are

  

M =

1
1 – D

for K > Kcrit

1 + 1 + 4D2 / K
2

for K < Kcrit

(5-53)

These characteristics are plotted in Fig. 5.19, for several values of K . As in the buck

converter, the effect of the discontinuous conduction mode is to cause the output voltage to

increase. The DCM portions of the characteristics are nearly linear, and can be

approximated as

   M ≈ 1
2

+ D
K (5-54)

0

1

2

3

4

5

M(D,K)

0 0.25 0.5 0.75 1

D

K
 =

 0
.0

1

K =
 0.05

K = 0.1

K ≥ 4/27

Fig. 5.19. Voltage conversion ratio M(D, K), boost converter.
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5 . 4 . Summary of results and key points

The characteristics of the basic buck, boost, and buck-boost are summarized in

Table 5.2. Expressions for Kcrit(D), as well as for the solutions of the dc conversion ratios

in CCM and DCM, and for the DCM diode conduction duty cycle D2, are given.

Table 5.2. Summary of CCM-DCM characteristics for the buck, boost, and buck-boost converters

Converter Kcrit(D) DCM M(D,K) DCM D2(D,K) CCM M(D)

Buck (1 – D)   2
1 + 1 + 4K / D2

  K
D

M(D,K) D

Boost D (1 – D)2   1 + 1 + 4D2 / K
2

  K
D

M(D,K)   1
1 – D

Buck-boost (1 – D)2   – D
K  K

  – D
1 – D

with K = 2L / RTs.      DCM occurs for   K < Kcrit.

The dc conversion ratios of the

DCM buck, boost, and buck-boost

converters are compared in Fig. 5.20. The

buck-boost characteristic is a line with
slope   1 / K . The characteristics of the

buck and the boost converters are both

asymptotic to this line, as well as to the line

M = 1. Hence, when operated deeply into

the discontinuous conduction mode, the

boost converter characteristic becomes
nearly linear with slope   1 / K , especially

at high duty cycle. Likewise, the buck

converter characteristic becomes nearly

linear with the same slope, when operated

deeply into discontinuous conduction mode

at low duty cycle.

The following are the key points of this chapter:

1.  The discontinuous conduction mode occurs in converters containing current- or voltage-

unidirectional switches, when the inductor current or capacitor voltage ripple is

large enough to cause the switch current or voltage to reverse polarity.

0

1

0 0.2 0.4 0.6 0.8 1

D

Boost

Buck

Buck
-boost 

(× –1)

DCM
M(D,K)

1
K

Fig. 5.20. Comparison of dc conversion ratios of
the buck-boost, buck, and boost converters
operated in discontinuous conduction mode.
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2.  Conditions for operation in the discontinuous conduction mode can be found by

determining when the inductor current or capacitor voltage ripples and dc

components cause the switch on-state current or off-state voltage to reverse

polarity.

3.  The dc conversion ratio M of converters operating in the discontinuous conduction

mode can be found by application of the principles of inductor volt-second and

capacitor charge balance.

4.  Extra care is required when applying the small-ripple approximation. Some waveforms,

such as the output voltage, should have small ripple which can be neglected. Other

waveforms, such as one or more inductor currents, may have large ripple that

cannot be ignored.

5.  The characteristics of a converter changes significantly when the converter enters DCM.

The output voltage becomes load-dependent, resulting in an increase in the

converter output impedance.

PROBLEMS

5.1 .   The elements of the buck-boost converter of Fig. 5.21 are ideal: all losses may be ignored. Your
results for parts (a) and (b) should agree with Table 5.2.

+
– L C R

+

V

–

Vg

Q1 D1

i(t)

Fig. 5.21

a)  Show that the converter operates in discontinuous conduction mode when K < Kcrit, and derive
expressions for K and Kcrit.

b)  Derive an expression for the dc conversion ratio V/Vg of the buck-boost converter operating in
discontinuous conduction mode.

c)  For K = 0.1, plot V/Vg over the entire range 0 ≤ D ≤ 1.

d)  Sketch the inductor voltage and current waveforms for K = 0.1 and D = 0.3.  Label salient
features.

e)  What happens to V at no load (R  → ∞)?  Explain why, physically.

5.2.  A certain buck converter contains a synchronous rectifier, as described in section 4.1.5.

a)  Does this converter operate in the discontinuous conduction mode at light load?  Explain.

b)  The load resistance is disconnected (R  → ∞), and the converter is operated with duty cycle
0.5. Sketch the inductor current waveform.
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5.3.  An unregulated dc input voltage Vg varies over the range 35V ≤ Vg ≤ 70V. A buck converter reduces
this voltage to 28V; a feedback loop varies the duty cycle as necessary such that the converter
output voltage is always equal to 28V. The load power varies over the range 10W ≤ Pload ≤
1000W. The element values are:

L = 22µH C = 470µF fs = 75kHz

Losses may be ignored.

(a) Over what range of Vg and load current does the converter operate in CCM?

(b) Determine the maximum and minimum values of the steady-state transistor duty cycle.

5.4.  The transistors in the converter of Fig. 5.22 are driven by the same gate drive signal, so that they
turn on and off in synchronism with duty cycle D.

+
– C R

+

V

–

Vg

Q1
D1

i(t)

L

D2

Q2

Fig. 5.22

(a)  Determine the conditions under which this converter operates in the discontinuous conduction
mode, as a function of the steady-state duty ratio D and the dimensionless parameter K =
2L / RTs.

(b)  What happens for D < 0.5?

(c)  Derive an expression for the dc conversion ratio M(D, K). Sketch M vs. D for K = 10 and for
K = 0.1, over the range 0 ≤ D ≤ 1.

+
– D1

L1

C2 R

+

V

–

Q1

C1

L2

Vg

i1 i2

iD

+   vC1   –

Fig. 5.23

5.5.  DCM mode boundary analysis of the Cuk converter of Fig. 5.23. The capacitor voltage ripples are
small.

(a)  Sketch the diode current waveform for CCM operation. Find its peak value, in terms of the
ripple magnitudes ∆iL1, ∆iL2, and the dc components I1 and I2, of the two inductor currents
iL1(t) and iL2(t), respectively.

(b)  Derive an expression for the conditions under which the Cuk converter operates in the
discontinuous conduction mode. Express your result in the form K < Kcrit(D), and give
formulas for K and Kcrit(D).

5.6.  DCM conversion ratio analysis of the Cuk converter of Fig. 5.23.

(a)  Suppose that the converter operates at the boundary between CCM and DCM, with the
following element and parameter values:
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D = 0.4 fs = 100kHz

Vg = 120 volts R = 10Ω

L1 = 54µH L2 = 27µH

C1 = 47µF C2 = 100µF

Sketch the diode current waveform iD(t), and the inductor current waveforms i1(t) and i2(t).
Label the magnitudes of the ripples and dc components of these waveforms.

(b)  Suppose next that the converter operates in the discontinuous conduction mode, with a
different choice of parameter and element values. Derive an analytical expression for the dc
conversion ratio M(D,K).

(c)  Sketch the diode current waveform iD(t), and the inductor current waveforms i1(t) and i2(t), for
operation in the discontinuous conduction mode.

+
–

D1L1

C2 R

+

V

–

Q1

C1

Vg

i1

i2
iD

L2

Fig. 5.24

5.7.  DCM mode boundary analysis of the SEPIC of Fig. 5.24

(a)  Sketch the diode current waveform for CCM operation. Find its peak value, in terms of the
ripple magnitudes ∆iL1, ∆iL2, and the dc components I1 and I2, of the two inductor currents
iL1(t) and iL2(t), respectively.

(b)  Derive an expression for the conditions under which the SEPIC operates in the discontinuous
conduction mode. Express your result in the form K < Kcrit(D), and give formulas for K
and Kcrit(D).

5.8.  DCM conversion ratio analysis of the SEPIC of Fig. 5.24.

(a)  Suppose that the converter operates at the boundary between CCM and DCM, with the
following element and parameter values:

D = 0.4 fs = 100kHz

Vg = 120 volts R = 10Ω

L1 = 50µH L2 = 75µH

C1 = 47µF C2 = 200µF

Sketch the diode current waveform iD(t), and the inductor current waveforms i1(t) and i2(t).
Label the magnitudes of the ripples and dc components of these waveforms.

(b)  Suppose next that the converter operates in the discontinuous conduction mode, with a
different choice of parameter and element values. Derive an analytical expression for the dc
conversion ratio M(D,K).

(c)  Sketch the diode current waveform iD(t), and the inductor current waveforms i1(t) and i2(t), for
operation in the discontinuous conduction mode.
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5.9.  An L-C input filter is added to a buck converter as illustrated in Fig. 5.25. Inductors L1 and L2 and
capacitor C2 are large in value, such that their switching ripples are small. All losses can be
neglected.

C1

+

v1

–

i2

L2Q1

D1
+
–

i1

L1

Vg R

+

v2

–

C2

Fig. 5.25

(a)  Sketch the capacitor C1 voltage waveform v1(t), and derive expressions for its dc component
V1 and peak ripple magnitude ∆vC1.

(b)  The load current is increased (R is decreased in value) such that ∆vC1 is greater than V1.

(i) Sketch the capacitor voltage waveform v1(t).

(ii) For each subinterval, determine which semiconductor devices conduct.

( i i i )  Determine the conditions under which the discontinuous conduction mode occurs.
Express your result in the form K < Kcrit(D), and give formulas for K and
Kcrit(D).

5 .10 .   Derive an expression for the conversion ratio M(D,K) of the DCM converter described in the
previous problem. Note: D is the transistor duty cycle.

5.11.  In the Cuk converter of Fig. 5.23, inductors L1 and L2 and capacitor C2 are large in value, such that
their switching ripples are small. All losses can be neglected.

(a)  Assuming that the converter operates in CCM, sketch the capacitor C1 voltage waveform
vC1(t), and derive expressions for its dc component V1 and peak ripple magnitude ∆vC1.

(b)  The load current is increased (R is decreased in value) such that ∆vC1 is greater than V1.

(i) Sketch the capacitor voltage waveform vC1(t).

(ii) For each subinterval, determine which semiconductor devices conduct.

( i i i )  Determine the conditions under which the discontinuous conduction mode occurs.
Express your result in the form K < Kcrit(D), and give formulas for K and
Kcrit(D).

5.12.  Derive an expression for the conversion ratio M(D,K) of the DCM Cuk converter described in the
previous problem. Note: D is the transistor duty cycle.

5 .13 .   A DCM buck-boost converter as in Fig. 5.21 is to be designed to operate under the following
conditions:

136V ≤ Vg ≤ 204V

5W ≤ Pload ≤ 100W

V = – 150V

fs = 100kHz

You may assume that a feedback loop will vary to transistor duty cycle as necessary to maintain a
constant output voltage of – 150V.
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Design the converter, subject to the following considerations:

• The converter should operate in the discontinuous conduction mode at all times

• Given the above requirements, choose the element values to minimize the peak inductor
current

• The output voltage peak ripple should be less than 1V

Specify:

(a) The inductor value L

(b) The output capacitor value C

(c) The worst-case peak inductor current ipk

(d) The maximum and minimum values of the transistor duty cycle D.

5.14.  A DCM boost converter as in Fig. 5.12 is to be designed to operate under the following conditions:

18V ≤ Vg ≤ 36V

5W ≤ Pload ≤ 100W

V = 48V

fs = 150kHz

You may assume that a feedback loop will vary to transistor duty cycle as necessary to maintain a
constant output voltage of 48V.

Design the converter, subject to the following considerations:

• The converter should operate in the discontinuous conduction mode at all times. To
ensure an adequate design margin, the discontinuous subinterval length D3Ts should be no
less than ten percent of the switching period Ts, at all operating points.

• Given the above requirements, choose the element values to minimize the peak inductor
current

• The output voltage peak ripple should be less than 1V

Specify:

(a) The inductor value L

(b) The output capacitor value C

(c) The worst-case peak inductor current ipk

(d) The maximum and minimum values of the transistor duty cycle D.

(e) The maximum and minimum values of the discontinuous subinterval length D3Ts.
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5 .15 .   In dc-dc converters used in battery-powered portable equipment, it is sometimes required that the
converter continue to regulate its load voltage with high efficiency while the load is in a low-
power “sleep” mode. The power required by the transistor gate drive circuitry, as well as much of
the switching loss, is dependent on the switching frequency but not on the load current. So to
obtain high efficiency at very low load powers, a variable-frequency control scheme can be used, in
which the switching frequency is reduced in proportion to the load current.

Consider the boost converter system of Fig. 5.26(a). The battery pack consists of two
nickel-cadmium cells, which produce a voltage of Vg = 2.4V ± 0.4V. The converter boosts this
voltage to a regulated 5V. As illustrated in Fig. 5.26(b), the converter operates in the
discontinuous conduction mode, with constant transistor on-time ton. The transistor off-time toff is
varied by the controller to regulate the output voltage.

(a)  Write the equations for the CCM-DCM boundary and conversion ratio M = V/Vg, in terms of
ton, toff, L, and the effective load resistance R.

For parts (b) and (c), the load current can vary between 100µA and 1A. The transistor on-time is
fixed: ton = 10µs.

(b)  Select values for L and C such that:

• The output voltage peak ripple is no greater than 50mV,

• The converter always operates in DCM, and

• The peak inductor current is as small as possible.

(c)  For your design of part (b), what are the maximum and minimum values of the switching
frequency?

a)
L

C R

+

v(t)

–

Vg

i(t)

battery pack effective load

Iload

b)
i(t)

t

ipk

ton
toff

Fig. 5.26


