สารบัญ

คำนำ		ก
สารบัญต	าราง	P
สารบัญภ	าพ	খ
บทที่ 1	บทนำ	
	Meta-materials ทำไมจึงเหนือธรรมชาติ?	1
บทที่ 2	ประวัติ หลักการ ประเภท และคุณลักษณะพิเศษทางฟิสิกส์ และทางไฟฟ้า ของวัสดุแม่เหล็กไฟฟ้าสังเคราะห์	
	2.1 ประวัติและหลักการของ Meta-materials	10
	2.2 วัสดุแม่เหล็กไฟฟ้าเชิงซ้อน	16
	2.3 ประเภทของ Meta-materials	20
	2.4 คุณลักษณะพิเศษทางฟิสิกส์และทางไฟฟ้าของ Meta-materials	24
บทที่ 3	การออกแบบโครงสร้างวัสดุแม่เหล็กไฟฟ้าสังเคราะห์	
	3.1 ทฤษฎีกลุ่ม (Group Theory) และ ทฤษฎีตำแหน่งกลุ่ม (Point Group Theory)	33
	เพื่อการวิเคราะห์และออกแบบวัสดุแม่เหล็กไฟฟ้าเชิงซ้อน	
	3.2 ทฤษฎีการวิเคราะห์วงจร	69
	3.3 การออกแบบและคำนวณค่า Chirality	87
	3.4 การหาค่าดัชนีหักเห ค่าสภาพยอมทางไฟฟ้า ค่าสภาพซึมซาบได้ทางแม่เหล็ก	98
	และค่าไครอลของโครงสร้าง Meta-materials	
	3.5 การหมุนทางแสงและค่ากัมมันตภาพทางแสง	101
บทที่ 4	การประยุกต์ใช้ Meta-materials ในอุปกรณ์ทางไฟฟ้าและแม่เหล็ก	
	4.1 การเพิ่มประสิทธิภาพในการรับและส่งในสายอากาศ	107
	4.2 การควบคุมโพลาไรเซชัน	113
	4.3 การแยกคลื่นแม่เหล็กไฟฟ้า ในวัสดุแม่เหล็กไฟฟ้าสังเคราะห์ประเภทไครอล	130
	4.4 เลนส์แบบสมบูรณ์แบบและวัสดุล่องหน	136
บทที่ 5	Meta-materials ปัจจุบันสู่อนาคต	
	5.1 สกัดจับลำแสง โซล่าห์เซลส์ทางเลือก	141
	5.2 การสร้างวัสดุแม่เหล็กไฟฟ้าสังเคราะห์กับเทคนิคเลเซอร์ความเร็ว 10 ⁻¹⁵ วินาที	142
	5.3 ลดเสียงลง: การคุมเสียงด้วยวัสดุแม่เหล็กไฟฟ้าสังเคราะห์	144
	5.4 การเปลี่ยนแปลงลักษณะของการเชื่อมโยงในวัสดุแม่เหล็กไฟฟ้าสังเคราะห์	145
ประวัติผู้เ	ขียน	148

สารบัญตาราง

ตารางที่ 2.1	ประเภทของวัสดุแม่เหล็กไฟฟ้าเชิงซ้อน	18
ตารางที่ 2.2	ประเภทของวัสดุ Bi-isotropic	19
ตารางที่ 3.1	ประเภทของวัสดุแม่เหล็กไฟฟ้าเชิงซ้อนทั้ง 4 ประเภท	34
ตารางที่ 3.2	ตารางคุณลักษณะของกลุ่ม Nonaxial Symmetries	37
ตารางที่ 3.3	ตารางคุณลักษณะของกลุ่ม Cyclic Symmetries	38
ตารางที่ 3.4	ตารางคุณลักษณะของกลุ่ม C _{กh}	40
ตารางที่ 3.5	ตารางคุณลักษณะของกลุ่ม C _{nv}	42
ตารางที่ 3.6	ตารางคุณลักษณะของกลุ่ม S _n	43
ตารางที่ 3.7	ตารางคุณลักษณะของกลุ่ม D _n	44
ตารางที่ 3.8	ตารางคุณลักษณะของกลุ่ม D _{nh}	46
ตารางที่ 3.9	ตารางคุณลักษณะของกลุ่ม D _{nd}	49
ตารางที่ 3.10	ตารางคุณลักษณะของกลุ่ม Cubic	51
ตารางที่ 3.11	ตารางคุณลักษณะของกลุ่ม Linear	53
ตารางที่ 3.12	ตารางคุณลักษณะของกลุ่ม C _{2v}	56
ตารางที่ 3.13	ตารางแสดงค่ากระแสที่ขึ้นกับองค์ประกอบสมมาตรของโครงสร้าง Omega	57
ตารางที่ 3.14	ตารางคุณลักษณะของกลุ่ม C₄	60
ตารางที่ 3.15	ตารางแสดงค่ากระแสที่ขึ้นกับองค์ประกอบสมมาตรของโครงสร้าง Gammadion	61
ตารางที่ 3.16	ตัวประกอบทางแม่เหล็กไฟฟ้าที่เป็นไปได้ของโครงสร้างในทุกกลุ่มโครงสร้าง	65
ตารางที่ 3.17	กลุ่มโครงสร้างที่ถูกจัดในกลุ่มชนิดของวัสดุแม่เหล็กไฟฟ้าเชิงซ้อน	68
ตารางที่ 3.18	ค่า $m{C}_i$ ของรูปทรงต่างๆ	74

สารบัญภาพ

ภาพที่ 1.1	โครงสร้างของวัสดุแม่เหล็กไฟฟ้าสังเคราะห์ที่กระทำและมีปฏิกิริยากับคลื่น แม่เหล็กไฟฟ้า	1
ภาพที่ 1.2	วิวัฒนาการของวัสดุแม่เหล็กไฟฟ้าสังเคราะห์	2
ภาพที่ 1.3	ตัวอย่าง (ก) โครงสร้างเส้นลวด ในยุคเริ่มต้นในปี ค.ศ. 2001 แสดงโครงสร้างเส้นลวด และโครงสร้างตัวสั่นพ้องแบบวงแหวนแยกส่วน และ (ข) ภาพแสดงการเคลื่อนที่ของ แสงเมื่อผ่านวัสดุที่มีค่าดัชนีหักเหที่มีค่าติดลบ	4
ภาพที่ 1.4	(ก) วัสดุล่องหน และ (ข) ภาพแสดงผลการจำลองทางคอมพิวเตอร์วัสดุล่องหน	4
ภาพที่ 1.5	(ก) โครงสร้างกากบาทหมุน ปี ค.ศ. 2009-2010 (ข) โครงสร้างเกลียว (Multiple Helices) ปี ค.ศ. 2010 และ (ค) โครงสร้างเกลียวเดี่ยว (Single Helix) ปี ค.ศ. 2010	5
ภาพที่ 2.1	โครงสร้างคาบจากการจัดเรียงตัวของเส้นลวดทองแดง (Copper Wire) ที่มีความยาว เป็นอนันต์ให้อยู่ในรูปร่างทรงสี่เหลี่ยมลูกบาศก์	11
ภาพที่ 2.2	โครงสร้างตัวสั่นพ้องแบบวงแหวนแยกส่วน (Split Ring Resonator) ประเภท (ก) 2 และ (ข) 3 มิติเมื่อ a คือ เส้นผ่านศูนย์กลางของเซลล์หน่วย (Unit Cell), c คือ ความ หนาของแผ่นตัวนำที่ไม่มีสภาพแม่เหล็ก (Nonmagnetic Conductor) และ d คือ	12
ภาพที่ 2.3	ระยะหางระหว่างแผนตวนา ค่ายังผลของค่าความซึมซาบได้ของสนามแม่เหล็ก (µ _{eff}) ของโครงสร้าง SRR ซึ่งถูก ควบคุมโดยค่าความถี่สั่นพ้อง (Resonance) ของค่าความจุไฟฟ้า (Capacitance) ที่ เกิดระหว่างแผ่นของ SRR และตัวเหนี่ยวนำ (Inductance) ที่เกิดในโครงสร้าง	12
ภา พที่ 2.4	(ก) วัสดุเหนือธรรมชาติโดยทำการรวมโครงสร้าง SRR และ Copper Wire และ (ข) กราฟแสดงผลการวัดค่าดัชนีการหักเหของแสงที่เปรียบเทียบระหว่างวัสดุเหนือ ธรรมชาติจริงที่ออกแบบให้มีค่าดัชนีการหักเหของแสงติดลบ เทฟลอน (Teflon) และ วัสดุเหนือธรรมชาติในทางทฤษฎี	13
ภาพที่ 2.5	์ โครงสร้าง (ก) Capacitively Loaded Strips (CLSs) และ (ข) โครงสร้างตัวสั่นพ้อง แบบวงแหวนแยกส่วนที่มีลักษณะเป็นรูปสี่เหลี่ยม (Square SRRs)	14
ภาพที่ 2.6	(ก) โครงสร้างและ (ข) วงจรไฟฟ้าของโครงสร้างตัวสั่นพ้องแบบวงแหวนแยกส่วนที่มี ลักษณะเป็นรูปวงกลม (Circular SRRs)	14
ภาพที่ 2.7	(ก) โครงสร้างและ (ข) วงจรไฟฟ้าของโครงสร้างตัวสั่นพ้องแบบวงแหวนแยกส่วน	15
ภาพที่ 2.8	ตัวอย่างการวิเคราะห์วงจรของโครงสร้าง Y	15

ภาพที่ 2.9	การแบ่งประเภทวัสดุไอโซทรอปิคในขั้นพื้นฐาน	17
ภาพที่ 2.10	การแบ่งประเภทย่อยของวัสดุไอโซทรอปิค	18
ภาพที่ 2.11	ทิศทางการเคลื่นที่ของพลังงาน (Poynting's Vector, $ec{S}$)และทิศทางการเคลื่อนที่	27
	ของคลื่น (Wave Vector, $ec{k}$)ในการเคลื่อนที่ในตัวกลางที่เป็นวัสดุเหนือธรรมชาติที่	
	ประพฤติตัวเป็นวัสดุ Right-Handed และ Left-Handed	
ภาพที่ 2.12	ผลกระทบเซเรนคอฟ (ก) ในตัวกลางที่ $n>$ 0 และ (ข) ในตัวกลางที่	28
	n <0 เมื่อ $ec{ u}$ คือเวกเตอร์ของความเร็ว $ec{S}$ คือทิศทางการเคลื่อนที่ของ	
	พลังงาน (Poynting ' s Vector) และ $ec{k}$ คือ ทิศทางการเคลื่อนที่ของ	
	เวคเตอร์คลื่น(Wave Vector)	
ภาพที่ 2.13	เส้นทางการสะท้อนของลำแสงที่รอยต่อของสุญญากาศ ($n>0$) และตัวกลางที่มี	29
	(ก) ค่า $n> 0$ และ (ข) $n<$ 0 เมื่อ 1) คือ ลำแสงตกกระทบ (Incident Beams) 2)	
	คือ ลำแสงสะท้อน (Reflected Beams) 3) คือ ลำแสงหักเห (Refracting Beams)	
	$ec{S}$ คือ ทิศทางการเคลื่อนที่ของพลังงาน และ $ec{k}$ คือ ทิศทางการเคลื่อนที่ของคลื่น	
ภาพที่ 3.1	โครงสร้าง 3 มิติที่มีส่วนประกอบสมมาตรสมบูรณ์	36
ภาพที่ 3.2	ตัวอย่างส่วนประกอบสมมาตร	36
ภาพที่ 3.3	แผนผังของกลุ่ม ในทฤษฎีกลุ่ม	37
ภาพที่ 3.4	โครงสร้างโมเลกุล: (ก) C ₁ -(S)-2-Brombutane (ข) C _i -Cyclo-(D-Ala-L-Ala)	38
	และ (ค) C _s -Propene	
ภาพที่ 3.5	โครงสร้างโมเลกุล: (ก) C ₂ - Penta-2,3-diene (ข) C ₃ - 2,6,7-Trimethyl-1-aza-	39
	bicyclo[2.2.2]octane และ (ค) $C_{\!_4}$ - Calix[4]aren Derivative	
ภาพที่ 3.6	โครงสร้างโมเลกุล: (ก) C _{2h} - 1,4-Dibrom-2,5-dichlorbenzene (ข) C _{2h} - (<i>E</i>)-1,2-	41
	Dichlorethene และ (ค) C _{3h} - 1,3,5-Trihydroxybenzene	
ภาพที่ 3.7	โครงสร้างโมเลกุล: (ก) C _{2v} - Formaldehyde (ข) C _{3v} - Chloroform	43
	และ (ค) C _{4v} - Calix[4]arene	
ภาพที่ 3.8	โครงสร้างโมเลกุล: (ก) S ₄ - Co ₄ Cp ₄ (ข) S ₄ - 2,3,7,8-Tetramethyl-	44
	spiro[4.4]nonane และ (ค) S ₆ - [6.5]Coronane	
ภาพที่ 3.9	โครงสร้างโมเลกุล: (ก) D ₂ - Twistane (ฃ) D ₃ - Tris(oxalato)-Iron(iii)-Complex	45
	ແລະ (ค) $D_{_3}$ - Three-fold Knot (not a real molecule)	

ภาพที่ 3.10	โครงสร้างโมเลกุล: (ก) D _{2h} - Ethene (ข) D _{4h} - AuCl ₄ และ (ค) D _{6h} - Benzene	48
ภาพที่ 3.11	โครงสร้างโมเลกุล: (ก) D _{2d} - Biphenyl (ข) D _{3d} - Ethane (staggered	50
	Conformation) และ (ค) D _{5d} - Ferrocene (staggered)	
ภาพที่ 3.12	โครงสร้างโมเลกุล: (ก) 7 _d - <i>neo</i> -Pentane (ข) O _h - PF ₆ ⁻ และ (ค) / _h - [60]Fullerene	53
	(C ₆₀)	
ภาพที่ 3.13	โครงสร้างโมเลกุล: (ก) C∞ _v - Chloracetylene (ข) <i>D</i> ∞ _h - Acetylene	54
ภาพที่ 3.14	โครงสร้าง Omega	55
ภาพที่ 3.15	องค์ประกอบทางสมมาตรทั้ง 4 แบบ ของโครงสร้าง Omega (ก) สมมาตรในตัว	55
	โครงสร้างเอง (ข) สมมาตรรอบแกนหมุน z (ค) ระนาบ x-y (ง) ระนาบ y-z	
ภาพที่ 3.16	ทิศทางของกระแสไฟฟ้าที่ไหลในโครงสร้างจากการใส่สนามไฟฟ้าจากภายนอก ก่อน	57
	และหลังพิจารณาองค์ประกอบสมมาตรทั้ง 4 (ก) สมมาตรในตัวโครงสร้างเอง (ข)	
	สมมาตรรอบแกนหมุน z (ค) ระนาบ x-y และ (ง) ระนาบ y-z	
ภาพที่ 3.17	โครงสร้าง Gammadion และองค์ประกอบสมมาตรทั้งสี่ของโครงสร้าง	59
	(ก) Identity (ข) 90° (ค) 180° และ (ง) 180°	
ภาพที่ 3.18	ทิศทางของกระแสไฟฟ้าที่ไหลในโครงสร้างจากการใส่สนามไฟฟ้าจากภายนอก ก่อน	60
	และหลังพิจารณาองค์ประกอบสมมาตรทั้ง (ก) Identity (ข) 90° (ค) 180° และ (ง)	
	180°	
ภาพที่ 3.19	โครงสร้างในของกลุ่ม C ₃₋₈	62
ภาพที่ 3.20	โครงสร้างของ C ₃	62
ภาพที่ 3.21	โครงสร้างของ C ₆	63
ภาพที่ 3.22	แผนภาพแสดง Subset ของวัสดุแม่เหล็กไฟฟ้าเชิงซ้อน	68
ภาพที่ 3.23	ค่า Inductance ของโครงสร้างพื้นฐาน	71
ภาพที่ 3.24	โครงสร้างชิ้นส่วน Microstrip	71
ภาพที่ 3.25	โครงสร้างชิ้นส่วน Circular Loop	72
ภาพที่ 3.26	โครงสร้างชิ้นส่วน Circular Spiral	73
ภาพที่ 3.27	(ก) โครงสร้าง Meta-materials รูปตัว S และ (ข) วงจรเสมือนของโครงสร้างรูปตัว S	74
ภาพที่ 3.28	โครงสร้าง และ วงจรเสมือนของโครงสร้าง Meta-materials รูปตัว Y	75

ภาพที่ 3.29	(ก) โครงสร้าง Meta-materials และ (ข) วงจรเสมือนของโครงสร้าง	76
ภาพที่ 3.30	(ก) โครงสร้างของ C _n ที่ออกแบบและ (ข) วงจรรวมของโครงสร้างที่หาจากทฤษฎีการ	77
	วิเคราะห์วงจรเมื่อ W คือความกว้างของแขน และ H1 คือแกน H2 คือแขนของแกน d	
	คือระยะห่างระหว่าง 2 แผ่น	
ภาพที่ 3.31	(ก) วงจร Purely Right-handed (PRH) (ข) วงจร Purely Left-handed (PLH) และ	79
	วงจร Composite Right/Left-handed Lossless Transmission Lines	
ภาพที่ 3.32	แผนภาพ Dispersion ของ 1) PRH TL 2) PLH TL และ 3) CRLH TL	80
ภาพที่ 3.33	ความสัมพันธ์ระหว่าง $\omega\!-\!eta$ กับวงจรเสมือนของ CRLH TL	81
ภาพที่ 3.34	ความสัมพันธ์ระหว่างค่าดัชนีการหักเห n กับค่าความถี่ $arnothing$	83
ภาพที่ 3.35	วงจรเสมือนของสายส่งที่มีความเป็นเนื้อเดียว	83
ภาพที่ 3.36	โครงสร้างสายส่ง LH และ RH	84
ภาพที่ 3.37	ตัวอย่างโครงสร้าง Meta-materials ที่มีค่าดัชนีการหักเหเข้าสู่ศูนย์	86
ภาพที่ 3.38	วัตถุ (ก) ที่มีคุณสมบัติไครอลลิตี และ (ข) ไม่มีคุณสมบัติไครอลลิตี	87
ภาพที่ 3.39	คุณสมบัติของวัสดุประเภทไครอล	88
ภาพที่ 3.40	วิธีหาค่าดัชนีไครอลลิตีด้วยวิธีการวัดความต่อเนื่องของลักษณะสมมาตร	88
ภาพที่ 3.41	การเปลี่ยนแปลงมุม B ของโครงสร้างของ C₄	90
ภาพที่ 3.42	การเปรียบเทียบค่าดัชนีไครอลลิตีของโครงสร้าง C ₃ -C ₈ (ก) วิธีการวัดความต่อเนื่อง	90
	ของลักษณะสมมาตร (Continuous Chirality Measures) และ (ข) วิธีแบ่งครึ่งมุม	
	สมมาตร (Angular Bisection Methods)	
ภาพที่ 3.43	การกำหนดจุดที่ใช้ในการคำนวณหาค่าไครอลลิตีด้วยวิธี (ก) วิธีการวัดความต่อเนื่อง	91
	ของลักษณะสมมาตร (Continuous Chirality Measures) และ (ข) วิธีแบ่งครึ่งมุม	
	สมมาตร (Angular Bisection Methods)	
ภาพที่ 3.44	(ก) โครงสร้าง Cross-wire (ข) ค่าสัมประสิทธิ์การส่งผ่าน และ (ค) ค่าดัชนีหักเห และ	92
	ค่าไครอล ของคลื่น RCP และ LCP	
ภาพที่ 3.45	(ก) โครงสร้าง Twisted-rosette (ข) ค่าสัมประสิทธิ์การส่งผ่าน และ (ค) ค่าสภาพ	93
	ยอมทางไฟฟ้า ค่าความซึมซาบได้ทางแม่เหล็ก และค่าไครอล ของคลื่น RCP และ	
	LCP	
ภาพที่ 3.46	LF ของวัสดุ Achiral media เมื่อ T = $T_{_+}$ = $T_{}$ = $0.9e^{i heta}$; $ heta$ = $ heta_{_\pm}$ มีค่าตั้งแต่ – π	97
	ถึง π ; LF เป็นตัวแปรของ (ก) $ heta_{\!r}$ และ (ข) $A_{\!r}$	

ภาพที่ 3.47	LF ของคลื่น RCP ในวัสดุ Chiral เมื่อเป็นฟังก์ชั่นของเฟสของค่าสัมประสิทธิ์การ	98
	ส่งผ่าน ของคลื่น LCP เมื่อ (ก) $ heta_{-}^{} = \pi$, (ข) $ heta_{-}^{} = \pi/2$, (ค) $ heta_{-}^{} = -\pi/2 $ และ	
	(1) $ heta_{-}=-\pi$.	
ภาพที่ 3.48	ขั้นตอนการหาค่า n , $arepsilon$, μ และ κ	100
ภาพที่ 3.49	X-C-C-Y มุมสองหน้า หรือ Dihedral angle.	101
ภาพที่ 4.1	ส่วนประกอบหลักของการสื่อสารโดยใช้คลื่นแม่เหล็กไฟฟ้า	107
ภาพที่ 4.2	ลักษณะการกระจายคลื่นแบบต่างๆ (ก) Directional Pattern (ข) Isotropic Patterns	108
	และ (ค) Omni Directional Pattern	
ภาพที่ 4.3	Pattern Parameters ของสายอากาศ	108
ภาพที่ 4.4	Snell's Law	109
ภาพที่ 4.5	การเคลื่อนที่ของคลื่นผ่านวัสดุที่มีค่าดัชนีการหักเหเป็นศูนย์ จากการประมวลผลด้วย	110
	วิธี FDTD ที่ Time Step ที่ (a) 0 (b) 500 (c) 1000 และ (d) 8000 เมื่อคลื่นเคลื่อนที่	
	จากด้านบนลงมาด้านล่างผ่านแถบวัสดุที่มีค่า n = 0	
ภาพที่ 4.6	การเคลื่อนที่ของคลื่นผ่านวัสดุที่มีค่าดัชนีการหักเหเป็นศูนย์ เมื่อคลื่นเคลื่อนที่จาก	111
	ด้านซ้ายไปทางด้านขวา ผ่านวัสดุรูปทรงคล้ายเลนส์นูนที่มีค่า n = 0	
ภาพที่ 4.7	(ก) ทิศทางของสนามไฟฟ้าแบบ 6 ทิศทาง ที่เคลื่อนที่ออกแบบวัสดุที่มีค่าดัชนีการหัก	111
	เหเป็นศูนย์ และ (ข) ค่าสนามไฟฟ้าที่ระยะ Far-field ที่มุมต่างๆ	
ภาพที่ 4.8	(ก) โครงสร้าง Fish Net และ (ข) ค่าดัชนีการหักเหในส่วนจริงและส่วนจินตภาพ	113
ภาพที่ 4.9	กรณีทั้ง 4 ของคลื่นที่มีโพลาไรเซชั่นแบบวงกลมที่แพร่กระจายภายวัสดุ Chiral เมื่อ	113
	คลื่นเคลื่อนที่เข้าเป็นมุมกับวัสดุ	
ภาพที่ 4.10	ความสัมพันธ์ระหว่างมุมตกกระทบและมุมส่งผ่านในวัสดุไครอล ที่มีค่าดัชนีการหักเห	115
	(ก) เป็นบวก และ (ข) เป็นลบ เมื่อ <i>ห</i> =0.25	
ภาพที่ 4.11	โครงสร้างเกลียวสี่เส้นแบบ (ก) หมุนขวา หรือ right-handed และ (ข) หมุนซ้าย หรือ	116
	left-handed (ค) โครงสร้างเกลียวเส้นเดี่ยว หรือ Single Helix (ง) โครงสร้างเกลียว	
	สามเส้น หรือ Triple Helix และ (จ) โครงสร้างเกลียวสี่เส้น หรือ Quadruple Helix	
ภาพที่ 4.12	โครงสร้างเกลี่ยวขนาดไมโครเมตร	116
ภาพที่ 4.13	โครงสร้างเกลียวสี่เส้นและผลตอบสนองทางแม่เหล็กไฟฟ้า	117

ภาพที่ 4.14	โครงสร้างเกลี่ยวห้าเส้นและผลตอบสนองทางแม่เหล็กไฟฟ้า	118
ภาพที่ 4.15	(ก) โครงสร้าง DNA ประเภทเกลียวคู่หรือ Double Helix (ข) โครงสร้าง Split Ring	119
	Resonator (SRR) (ค) โครงสร้างเกลียวเดี่ยว หรือ Single Helix และ (ง) โครงสร้าง	
	DNA ที่แสดงขนาด 2.5nm (diameter) x 3.4nm (helix turn)	
ภาพที่ 4.16	(ก) โครงสร้าง SRR และ (ข) ผลตอบสนองทางแม่เหล็กไฟฟ้าของโครงสร้าง	120
ภาพที่ 4.17	(ก) โครงสร้างเกลี่ยว DNA แบบหมุนตามเข็มนาฬิกา (Right-handed) (ข) การ	120
	เปรียบเทียบผลตอบสนองทางแม่เหล็กไฟฟ้า จาก LCP และ RCP excitation (ค)	
	โครงสร้างเกลียว DNA แบบหมุนทวนเข็มนาฬิกา (Left-handed) และ (ง) การ	
	เปรียบเทียบผลตอบสนองทางแม่เหล็กไฟฟ้า จาก LCP และ RCP excitation	
ภาพที่ 4.18	(ก) โครงสร้าง C8 แขนไม่เท่า เมื่อ A = 17.472 mm, B = 2.912 mm C = 14.976	121
	mm และ $ heta$ = 30 degree (ข) Array ของโครงสร้าง C8 แขนไม่เท่า สร้างจากแผ่น	
	Rogers RT 6010 <i>ɛ</i> , = 10.2 ความหนา 0.254 mm ขนาดของแผ่น PCB คือ	
	17.6x17.6 mm ชั้นทองแดงมีความหนา 0.035 mm	
ภาพที่ 4.19	สนามไฟฟ้าบนโครงสร้าง C8 แขนไม่เท่า เมื่อพิจารณาการ Excitation ด้วยคลื่นที่มี	122
	โพลาไรซ์แบบวงกลมประเภท (ก) หมุนซ้ายและ (ข) หมุนขวา	
ภาพที่ 4.20	(ก) สายอากาศประเภทไมโครสติปประเภทโพลาไรซ์แบบวงกลม และ (ข) การวาง	123
	โครงสร้างโพลาไรซ์ C8 แขนไม่เท่า บนสายอากาศไมโครสติป	
ภาพที่ 4.21	ค่า Return Loss (ก) ก่อนและ (ข) หลังมีส่วนโครงสร้างโพลาไรซ์ C8 แขนไม่เท่า และ	123
	ค่าอัตราส่วน AR ของสายอากาศ (ค) ก่อนและ (ง) หลังมีส่วนโครงสร้างโพลาไรซ์ C8	
	แขนไม่เท่า	
ภาพที่ 4.22	โครงสร้าง C8 แบบแขนสลับ เมื่อขนาดของ Unit Cell คือ 37mm x 37mm ความ	124
	กว้างของเส้นโครงสร้างมีค่า ${f w}$ = 2.8 mm ความยาวของแกนหลัก ${f H}_{_1}$ = 15.7 mm	
	ความยาวของแขนรอง ${ m H}_2$ = d/2 mm ค่ามุมระหว่างแขนหลัก B = 360 $^{ m o}$ /n ความ	
	หนาของเส้นโครงสร้าง t = 0.03 mm ความหนาของแผ่น Substrate ${f s}$ = 0.254	
	mm	
ภาพที่ 4.23	ผลจากการประมวลผลด้วยโปรแกรมคอมพิวเตอร์และจากการวัดจริงของโครงสร้าง	125
	C8 แบบแขนสลับ ค่าสัมประสิทธิ์การส่งผ่านของคลื่น RCP และ LCP (ก) ขนาด (ข)	
	เฟส (ค) ค่า Chirality และ (ง) ค่าดัชนีการหักเห	
ภาพที่ 4.24	โครงสร้าง Unit cell ของ Multilayer 3D single helix (ก) มองมุมเฉียง และ (ข) มอง	126
	ด้านข้าง (ค) Unit cell ของ Multilayer 3D double helix (ง) และ (จ) โครงสร้างจริง	
	ของ Multilayer 3D single และ double helix ตามลำดับ	

ภาพที่ 4.25	ผลการจำลองเทียบกับผลวัด เมื่อ (ก) และ (ข) แอมพลิจูดของสัมประสิทธิ์การส่งผ่าน	127
	(ค) และ (ง) เฟสของสัมประสิทธิ์การส่งผ่าน ของโครงสร้างเกลียวสายเดี่ยว 3 มิติ	
	แบบหลายชั้น	
ภาพที่ 4.26	ผลการจำลองเทียบกับผลวัด เมื่อ การ (ง) และ (ค) ดัชนีหักเหและไครอล (ข) และ (ก)	128
	สูญเสีย ของโครงสร้างเกลียวสายเดี่ยว3 มิติแบบหลายชั้น	
ภาพที่ 4.27	ผลการจำลองเทียบกับผลวัด เมื่อ (ก) และ (ข) แอมพลิจูดของสัมประสิทธิ์การส่งผ่าน	129
	(ค) และ (ง) เฟสของสัมประสิทธิ์การส่งผ่าน ของโครงสร้างเกลียวสายคู่ 3 มิติแบบ	
	หลายชั้น	
ภาพที่ 4.28	ผลการจำลองเทียบกับผลวัด เมื่อ (ก) และ (ข) ดัชนีหักเหและไครอล (ค) และ (ง) การ	129
	สูญเสีย ของโครงสร้างเกลี่ยวสายคู่ 3 มิติแบบหลายชั้น	
ภาพที่ 4.29	ทิศทางการเคลื่อนที่ของคลื่นเมื่อเคลื่อนที่ผ่านวัสดุประเภทไครอล	130
ภาพที่ 4.30	ทิศทางการเคลื่อนที่ของคลื่นเมื่อเคลื่อนที่ผ่านวัสดุประเภทไครอลรูปทรง Wedge	131
ภาพที่ 4.31	คลื่นที่แยกเมื่อผ่านวัสดุประเภทไครอลรูปทรง Wedge	132
ภาพที่ 4.32	ความสัมพันธ์ระหว่างมุมตกกระทบและมุมที่คลื่นเคลื่อนที่ผ่านวัสดุที่ไม่ใช่ไครอล	133
	รูปทรง Wedge เมื่อมีค่าดัชนีการหักเหต่างๆ	
ภาพที่ 4.33	ความสัมพันธ์ระหว่างค่ามุมวิกฤติของคลื่นโพลาไรซ์แบบวงกลมประเภทหมุนซ้าย	134
	หรือมุมขวา กับค่าพารามิเตอร์ไครอล (K)	
ภาพที่ 4.34	ความสัมพันธ์ระหว่างมุมตกกระทบและมุมส่งผ่านเมื่อค่าดัชนีการหักเหมีค่าต่างกัน	135
	เมื่อ (ก) ห=0.25 และ (ข) ห=1	
ภาพที่ 4.35	(ก) การห่อหุ้มบางส่วน (ข) ปรากฏการณ์ภาพและการกระเจิงเมื่อวัตถุไดโพล (จุดสี	137
	ดำ) อยู่ที่ตำแหน่ง $ z_d^{} = d/5$ ห่างจากหน้า Slab วัสดุแม่เหล็กไฟฟ้าสังเคราะห์	
	(ระหว่างเส้นทึบ) เมื่อ (ก) และ (ข) เป็นผลมาจากเส้นโค้งสีดำ (ทึบ) และสีแดง (ปะ)	
ภาพที่ 4.36	(ก) วัตถุไดโพลที่ถูกห่อหุ้มและ (ข) ถูกสร้างภาพด้วย Slab ประเภท Anisotropic	137
	"folded geometry"	
ภาพที่ 5.1	Tapered Ridges ที่สร้างจากชั้นโลหะและฉนวน ที่มีความสามารถในการดูด	141
	ซับคลื่นแม่เหล็กไฟฟ้าได้นช่วงความถี่ต่างๆ ในระดับชั้นที่ต่างกัน เมื่อความ	
	ยาวคลื่นสอดคล้องกับความกว้างของ Ridge	

ภาพที่ 5.2	ผลตอบสนองการดูดซับแสงที่ความยาวคลื่นต่างๆ กัน	142
ภาพที่ 5.3	การทดลองในห้องปฏิบัติการที่มหาวิทยาลัย Harvard แสดงการใช้ Femtosecond	143
	Lasers เพื่อใช้สร้าง Meta-materials	
ภาพที่ 5.4	เทคนิคการสร้างด้วยเลเซอร์ ที่สามารถจัดเรียงอนุภาคเงินนาโน 3 มิติ ที่ไม่ต่อเนื่อง	143
	ด้วยเมตริกโพลิเมอร์ เทคนิคการสร้างโครงสร้าง Meta-materials แบบใหม่โดย	
	คณะวิจัยจากมหาวิทยาลัย Harvard	
ภาพที่ 5.5	(ก) โครงสร้าง Meta-materials ที่ม้วนเป็นวง เส้นทึบเป็นแผ่นของแข็งที่ถูกสอดใส่ใน	144
	ของไหล	
ภาพที่ 5.6	สนามความดันของ (ก) ปริซึมเสียงที่สร้างจากโครงสร้าง Meta-materials ขนาดเล็ก	145
	(ข) ปริซึมเสียง ที่ถูกแสดงในรูปวัสดุประสิทธิผล	
ภาพที่ 5.7	(ก) โครงสร้าง Meta-materials (ข) ค่าคงที่ไดอิเลคตริคประสิทธิผล (ส่วนจริง) ของ	146
	โครงสร้าง (ค) ข้อมูล Time-resolved photoluminescence จาก QDs ที่สร้างบน	
	Meta-materials ตัวอย่างควบคุม และแผ่น Substrate แก้ว ที่ความยาวคลื่น 605	
	nm 621 nm และ 635 nm (ง) Lifetime ของ QDs เป็น Function ของความยาวคลื่น	
	ของ Meta-material ตัวอย่างควบคุม และแผ่น Substrate แก้ว	